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1-benzotriazol group†
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For the purpose of modification of a variety of derivatives,
including biologically important compounds, such as sugar
derivatives and proteins etc., we have first synthesized several
non-symmetrical bi-dentate cross-linking reagents, namely
3-(phthalimidoyloxycarbonyl)butyric acid chloride (1), 4-(2-
benzothiazolyloxycarbonyl)butyric-N -hydroxyphthalimide
ester (4) and 4-(1-benzotriazoleoxa)butyric-N-hydroxyphtha-
limide ester (5).

Recently, we have synthesized several antigens which were con-
structed from oxidized cholesterols bound to protein through
MBS (m-maleimidobenzoyl N-hydroxylsuccinimide ester) cross-
linking reagents, in order to develop a new diagnostic method
for atherosclerosis and related diseases using the immuno-assay
protocol.1

As common symmetrical cross-linking reagents having “active
ester” groups,2 the synthesized bifunctional linkers, such as DSG
(disuccimidyl glutarate) and MBS, have become very useful
in the area of chemical conjugation of particular biologically
active molecules.3 The MBS linker is particularly useful as a
non-symmetrical cross-linking reagent, however, apparently its
limitation is that the maleimidoyl group is fundamentally only
useful for the Michael addition of an SH group, which is sometimes
hard or laborious to introduce into the target molecule. In order
to attain the modification of versatile compounds, new types
of non-symmetrical cross-linking reagents having two different
reactivities towards various common nucleophilic groups, such as
hydroxyl, amine, thiol, carboxyl and so on, are quite interesting
and challenging targets. We first targeted and succeeded in
synthesizing the acid chloride linker with “active ester” moiety,
3-(phthalimidoyloxycarbonyl)butyric acid chloride (1) in a pure
crystalline form.

However, similarly to common acid chlorides, this linker is
unstable and not safe for handling and longer storage. Therefore,
we further targeted the synthesis of the non-symmetrical cross-
linking reagents having two groups with different reactivities, 4-
(2-benzothiazolyloxycarbonyl)butyric-N-hydroxyphthalimide es-
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ter (4) and 4-(1-benzotriazoleoxa)butyric-N-hydroxyphthalimide
ester (5).

In this communication, we describe the first synthesis of a new
class of non-symmetrical cross-linking reagents 1, 4, and 5. We also
preliminarily examined the introduction of the linkers 1, 4, and
5 into cholesterol through selective reaction with the 3b-OH, and
successively with benzylamine as a protein model of the cholesterol
antigen.

The acid chloride linker having an “active ester” 14 was prepared
by the following two procedures: (A) the one step reaction of N-
hydroxyphthalimide (we selected N-hydroxyphthalimide instead
of N-hydroxysuccimide for the reason of ease of monitoring the
reaction by TLC) with glutaryl dichloride in the presence of
pyridine in 44% yield (Scheme 1), or (B) the reaction of 1.2 equiv. of
thionyl chloride with 4-(N-oxyphthalimidylcarbonyl)butyric acid
(2) in 92% yield (Scheme 2), where compound 2 was obtained
by the reaction of N-hydroxyphthalimide with glutaric anhydride
in the presence of 4-dimethylaminopyridine (4-DMAP) in 87%
yield. The target non-symmetrical chlorocarbonyl active ester
linker (1) was obtained as a pure solid compound after repeated
recrystallization from hexane-AcOEt.

Scheme 1

Scheme 2
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Table 1 The reactivity of several model “active ester” compounds towards nucleophiles

Entry Substrate NuH Time Product Yield (%)b

1 Z = OPhth 24 h 10 82

2 Z = OPhth 16 h 11 75

3 Z = OPhth 12 h 12 77

4 Z = OBt 5 min 10 77

5 Z = OBtz 1 h 10 89

6 Z = Bt 6 h 10 83

a OPhth=N-oxyphthalimidoyl, OBt=1-oxybenzotriazolyl, OBtz=2-oxybenzothiazolyl, and Bt=1-benzotriazolyl. b Isolated yields (not optimized).

The linker 1 is sensitive to moisture and decomposed gradually,
however, it can be stored under N2 for a long time.

Due to the activation of the acyl group (including sulfinyl and
sulfonyl esters), it is well known that N-hydroxybenzotriazole5

and N-benzotriazole6–7 are quite effective and useful. Meanwhile,
there has been no report about the reactivity difference between
so-called “active ester” groups. In order to obtain more stable
non-symmetrical cross-linkers having two different “active ester”
groups than the chlorocarbonyl linker 1, it is necessary and
important to determine the reactivities of the “active ester”
groups towards nucleophiles. Therefore, at first we determined
the reactivity differences of several so-called “activated carbonyl”
groups using model compounds (Table 1).

The results clearly indicate that the reactivity order towards ben-
zyl alcohol is 7 >> 8 > 9 > 6 (cf. entries 1, 4, 5, and 6). In the case
of 6, the reactivities towards benzyl amine and benzyl thiol were
also examined (entries 2 and 3). Expectedly, the reactivity order is
BnSH > BnNH2 > BnOH, as described in textbooks. From these
results, we selected the combinations of benzotriazolyloxycarbonyl
and N-phthalimidoxycarbonyl and 2-benzothiazolyloxycarbonyl
groups as the candidates for the “active ester” groups of the bi-
dentate cross-linkers. At first, we attempted to synthesize cross-
linkers having benzotriazolyloxy carbonyl as one of the “active
ester” groups, such as 4-(1-benzotriazolyloxycarbonyl)butyric-N-
hydroxyphthalimide ester (3) (Fig. 1) by the reaction of 1 with
N-hydroxybenzotriazole in the presence of DMAP.

The reaction proceeded to form 3, however, we failed to isolate it
in a pure form at this stage, probably due to the very reactive nature
of the benzotriazolyloxycarbonyl group. Therefore, we targeted for

Fig. 1

synthesis the candidates having other combinations of PhthOCO-,
BtzOCO-, and BtCO-groups as “activated” carbonyl groups.

Finally after extensive effort changing reaction conditions and
isolation procedures, we successfully synthesized 48 by the reaction
of 1 with 2-hydroxybenzothiazole in the presence of DABCO at
0 ◦C in 46% yield (Scheme 3), and 59 by the reaction of 2 with
benzotriazole in the presence of N,N¢-dicyclohexylcarbodiimide
(DCC) at 0 ◦C in 84% yield (Scheme 4).

Scheme 3

In order to apply and test the ability of the new linkers thus
prepared in an actual biological molecule system, we studied
the reaction of the linkers 1, 4, and 5 with cholesterol in the
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Table 2 Reaction of non-symmetrical cross linker with cholesterol

Entry Substrate Yield (%)a

1 1 54
2 4 68
3 5 27b

a Isolated yields (not optimized). b 5 was recovered in 40% yield.

Scheme 4

presence of 4-DMAP as a base. The yields of the 3-cholesteroyl-
4-(phthalimidoyloxycarbonyl)butyrate (13)10 are summarized in
Table 2.

As the result, a relatively higher yield was obtained in the case
of 4 (entry 2) in a shorter time.

The low yield of 13 in the case of 5 (entry 3) will be explained
by the relatively low leaving ability of the benzotriazole group (cf.
Table 1).

Further, we examined the reaction of the compound 13 with
benzylamine (a model compound for protein) as a model reaction
for the synthesis of an antigen. The product 3-cholesteroyl-
4-(benzylaminocarbonyl)butyrate (14)11 was isolated by flash
column chromatography on silica gel in a high yield of 91%
(Scheme 5).

Scheme 5

In our previous report1 we have demonstrated that the tar-
get monoclonal antibody was successfully obtained by in situ
immunization with the antigen obtained by the reaction of the
pre-antigen bearing MBS moiety (such as 13 in this report)
with protein. Consequently, it is expected that many kinds of
monoclonal antibodies will be easily attained by using the non-
symmetrical cross-linkers described here.

It would be interesting to modify sugar derivatives, such as
cellulose (include modified celluloses), starch (modified starches),
cyclodextrin etc., using the new non-symmetrical cross linkers

1,4, and 5. We are now aiming to introduce these linkers
into filter papers and modified starches, in order to develop
useful functionalized papers and starches, and have succeeded in
modifying these materials in preliminary experiments.
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